인공지능 머신러닝으로 조산 위험 예측…세계 최초
인공지능 머신러닝으로 조산 위험 예측…세계 최초
  • 전성운 기자
  • 승인 2021.05.25 01:59
  • 수정 2021-05-25 09:26
  • 댓글 0
이 기사를 공유합니다

ⓒPixabay
ⓒPixabay

국내 연구진이 인공지능의 머신 러닝 기법을 활용해 조산의 위험 가능성을 예측할 수 있음을 세계 최초로 확인했다. 

24일 박선화 이대목동병원 산부인과 교수는 임산부 질액 내 박테리아 위험 요소 모델을 인공지능 머신 러닝 기법으로 분석, 조산 위험을 예측한 연구를 발표했다.

조산은 임신 20주를 지나 37주 이전에 분만하는 것으로, 전 세계적으로 출생의 5~10%가 조산이다.

초혼연령 상승, 고령산모 증가, 체외수정술 증가 등으로 조산 위험이 해마다 증가하고 있다.

조산아로 분만한 미숙아는 사망률이 높은데다 성장하는 동안 지속적인 재활치료를 받아야 하는 경우가 많아 미리 진단하고 대비하는 것이 중요하다.

조기진통 및 조기양막파수로 인한 조산이 발생하는 이유로 임신부 질내 유해한 박테리아의 상행 감염 때문이라는 연구가 세계적으로 많이 보고됐지만 이를 사전에 진단해 예방하기 위한 뚜렷한 방법은 없었다.    

연구팀은 임신 중기 임신부의 질액을 채취, 이전의 선행연구를 통해 조산을 예측할 수 있는 후보균들의 정성적 및 정략적 평가를 시행하고, 임신부의 조산 여부에 따라 어떠한 차이가 있는지 분석해 예측 모델을 만들었다.

단순히 균의 검출 유무로는 조산의 예측이 어려워, 후보 균들의 조합과 상대적인 비율을 이용해 ‘인공지능 기법’으로 예측을 위한 알고리즘을 만들기 위해서다.

연구 결과 이 모델의 영향을 주는 핵심 균은 락토바실러스 이너스(Lactobacillus iners), 유레아플라즈마 파붐(Ureaplasma parvum)이었다.

이를 통해 조산을 72% 예측할 수 있었고, 그 외에 혈액학적인 정보를 통해 측정할 수 있는 백혈구 수를 조합했을 때는 예측률이 77%로 높아졌다.

교신저자인 김영주 이대목동병원 산부인과 교수는 “이번 연구에서 밝혀진 대로 조산을 유발하는 다양한 원인들을 박테리아 위험 요소 모델에 접목시킨다면 더 좋은 예측 모델을 만들 수 있을 것”이라고 연구 의의를 설명했다.

이와 관련해서 이대목동병원 산부인과학교실 연구팀은 새로운 바이오마커를 발굴하고 AI진단 알고리즘을 개발해 상용화를 진행하는 진단전문회사 ㈜디앤피바이오텍과 공동연구를 진행 중이다.

박선화 이대목동병원 산부인과 교수는 “조산율이 10% 내외라고는 하지만 실제로 상급종합병원인 이대목동병원에서 근무하다 보니, 조기진통, 조기양막파수의 증상으로 조산의 위험성이 높은 고위험 산모를 많이 치료했다”며 “미리 조산 원인을 알 수 있는 방법을 통해 예방적 조치를 취한다면 더욱 효과적인 진료를 할 수 있을 것”이라고 말했다.

해당 논문은 미국 생식면역학회지 AJRL(American Journal of Reproductive Immunology) 최근호에 게재됐다.

 

산부인과 김영주(왼쪽) 교수와 박선화 교수 ⓒ이대목동병원
산부인과 김영주(왼쪽) 교수와 박선화 교수 ⓒ이대목동병원

 

기사가 마음에 드셨나요?

여성신문은 1988년 창간 이후 여성 인권 신장과 성평등 실현을 위해 노력해 온 국내 최초, 세계 유일의 여성 이슈 주간 정론지 입니다.
여성신문은 여성들의 더 나은 삶을 위해 여성의 '안전, 사회적 지위, 현명한 소비, 건강한 가족'의 영역에서 희망 콘텐츠를 발굴, 전파하고 있습니다.
저희 기사가 마음에 드셨다면 좋은 기사 후원하기를 해주세요.
여러분의 후원은 여성신문이 앞으로도 이 땅의 여성을 위해 활동 할 수 있도록 합니다.

여성신문 좋은 기사 후원하기


※ 소중한 후원금은 더 좋은 기사를 만드는데 쓰겠습니다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.